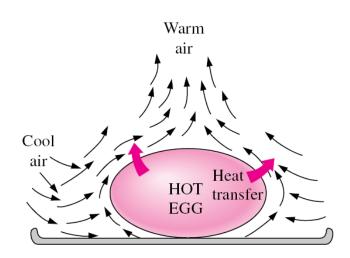
Objectives

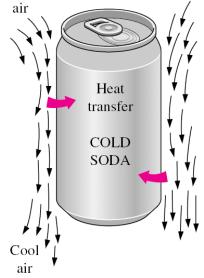
- Understand the physical mechanism of natural convection
- Evaluate the Grashof number
- Evaluate the Nusselt number for natural convection associated with vertical, horizontal, and inclined plates as well as cylinders and spheres
- Examine natural convection from finned surfaces, and determine the optimum fin spacing
- Analyze natural convection inside enclosures such as doublepane windows
- Consider combined natural and forced convection, and assess the relative importance of each mode.

Natural Convection

• Examples:

- Heat transfer from electric baseboard heaters
- Heat transfer from refrigeration coils
- Heat transfer from our body
- Natural convection in gases usually accompanied by radiation of comparable magnitude



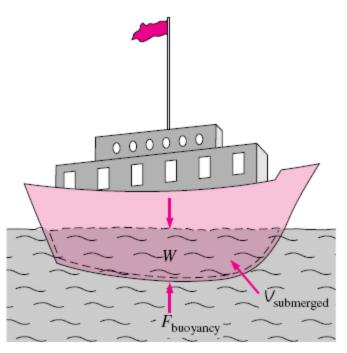


Natural Convection

- Buoyancy forces are responsible for the fluid motion in natural convection.
- Viscous forces oppose the fluid motion.
- In gravitational field, the upward force exerted by a fluid on a body completely or partially immersed in it →
 buoyancy force

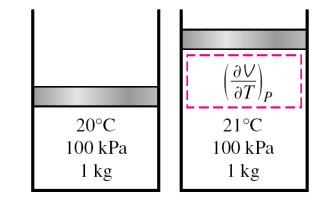
$$F_{\text{buoyancy}} = \rho_{\text{fluid}} g V_{\text{body}}$$

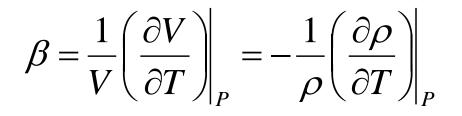
$$F_{\text{net}} = W - F_{\text{buoyancy}}$$
$$= \rho_{\text{body}} g V_{\text{body}} - \rho_{\text{fluid}} g V_{\text{body}}$$
$$= (\rho_{\text{body}} - \rho_{\text{fluid}}) g V_{\text{body}}$$

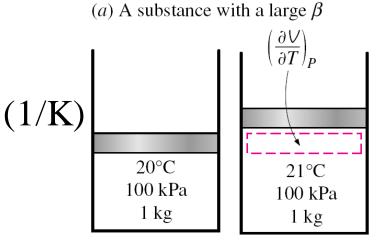


Natural Convection

- In heat transfer → express the net buoyancy force in terms of temperature difference
- Buoyancy forces are expressed in terms of fluid temperature differences through the:
 volume expansion coefficient







(b) A substance with a small β

Volume expansion coefficient β

• The volume expansion coefficient can be expressed approximately by replacing differential quantities by differences as

$$\beta \approx -\frac{1}{\rho} \frac{\Delta \rho}{\Delta T} = -\frac{1}{\rho} \frac{\rho_{\infty} - \rho}{T_{\infty} - T} \quad (\text{at constant } P) \quad (11-4)$$

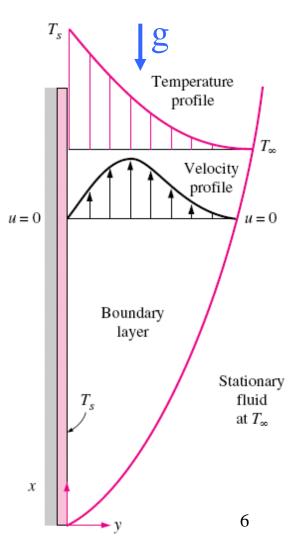
$$\rho_{\infty} - \rho = \rho \beta (T - T_{\infty}) \quad (\text{at constant } P) \quad (11-5)$$

• For *ideal gas*

$$\beta_{\text{ideal gas}} = \frac{1}{T}$$
 (1/K) (11-6)

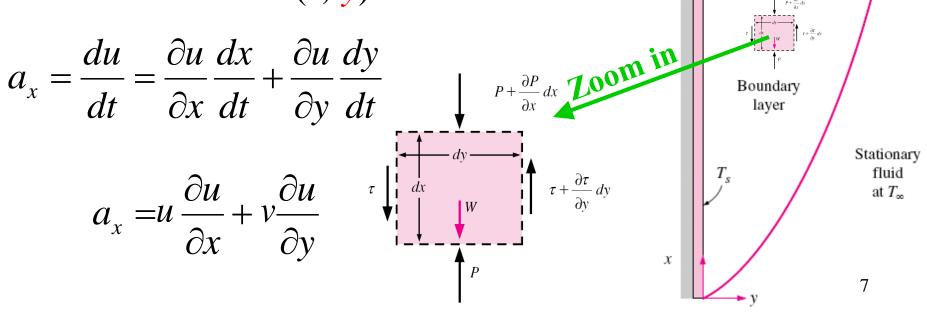
Equation of Motion and the Grashof Number

- Consider a vertical hot flat plate immersed in a quiescent fluid body.
- Assumptions:
 - steady,
 - laminar,
 - two-dimensional,
 - Newtonian fluid, and
 - constant properties, except the density difference $\rho \rho_{\infty}$ (Boussinesq approximation).



Consider a differential volume element.

- Newton's second law of motion $\delta m \cdot a_x = F_x$ (11-7) $\delta m = \rho (dx \cdot dy \cdot 1)$
- The acceleration in the *x*-direction is obtained by taking the total differential of *u*(*x*, *y*)



g

u = 0

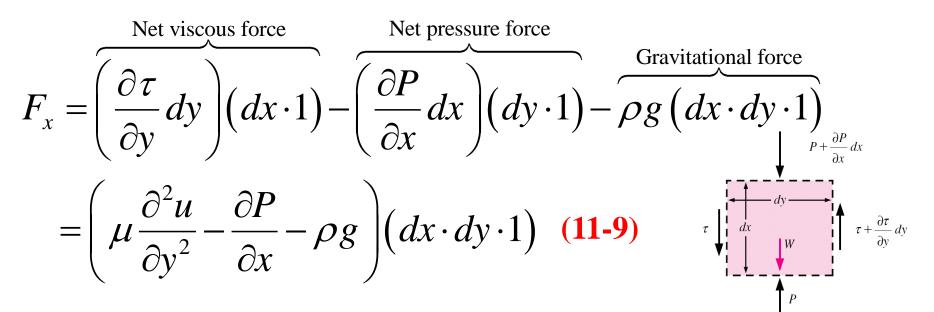
Temperature profile

> Velocity profile

 T_{∞}

u = 0

• The net surface force acting in the *x*-direction



Substituting Eqs. 11–8 and 11–9 into Eq. 11–7 and dividing by ρ · dx · dy ·1 gives the *conservation of momentum* in the *x*-direction

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) = \mu\frac{\partial^2 u}{\partial y^2} - \frac{\partial P}{\partial x} - \rho g$$

(11-10)

• The *x*-momentum equation in the quiescent fluid outside the boundary layer (setting u=0)

$$\frac{\partial P_{\infty}}{\partial x} = -\rho_{\infty}g \tag{11-11}$$

- Noting that
 - -v << u in the boundary layer and thus $\partial v / \partial x \approx \partial v / \partial y \approx 0$, and
 - there are no body forces (including gravity) in the ydirection,

the force balance in the y-direction is

$$\frac{\partial P}{\partial y} = 0 \quad \Longrightarrow P(x) = P_{\infty}(x) = P \quad \Longrightarrow \quad \frac{\partial P}{\partial x} = \frac{\partial P_{\infty}}{\partial x} = -\rho_{\infty}g$$

Substituting into Eq. 9–10

$$\rho\left(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}\right)=\mu\frac{\partial^2 u}{\partial y^2}+\left(\rho_{\infty}-\rho\right)g\quad (11-12)$$

 Substituting Eq. 11-5 it into Eq. 11-12 and dividing both sides by ρ gives

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\frac{\partial^2 u}{\partial y^2} + g\beta\left(T - T_{\infty}\right)$$
(11-13)

- The momentum equation involves the temperature, and thus the momentum and energy equations must be solved simultaneously.
- The set of three partial differential equations (the continuity, momentum, and the energy equations) that govern natural convection flow over vertical isothermal plates can be reduced to a set of two ordinary nonlinear differential equations by the introduction of a similarity variable.

The Grashof Number

• The governing equations of natural convection and the boundary conditions can be nondimensionalized

$$x^* = \frac{x}{L_c} \; ; \; y^* = \frac{y}{L_c} \; ; \; u^* = \frac{u}{V} \; ; \; v^* = \frac{v}{V} \; ; \; T^* = \frac{T - T_\infty}{T_s - T_\infty}$$

• Substituting into the momentum equation and simplifying give

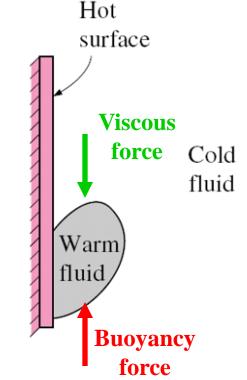
$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = \left[\frac{g\beta(T_s - T_{\infty})L_c^3}{v^2} \right] \frac{T^*}{\operatorname{Re}_L^2} + \frac{1}{\operatorname{Re}_L} \frac{\partial^2 u^*}{\partial y^{*^2}} \quad (11-14)$$

• The dimensionless parameter in the brackets represents the natural convection effects, and is called the Grashof number Gr_L

$$Gr_{L} = \frac{g\beta(T_{s} - T_{\infty})L_{c}^{3}}{v^{2}}$$
(11-15)
$$Gr_{L} = \frac{Buoyancy force}{Viscous force}$$

• The flow regime in natural convection is governed by the *Grashof number*

 $Gr_L > 10^9$ flow is turbulent



Natural Convection over Surfaces

- Natural convection heat transfer on a surface depends on
 - geometry,
 - orientation,
 - variation of temperature on the surface, and
 - thermophysical properties of the fluid.
- The simple empirical correlations for the average *Nusselt number* in natural convection are of the form

$$Nu = \frac{hL_c}{k} = C \cdot (Gr_L \cdot \Pr)^n = C \cdot Ra_L^n \quad (11-16)$$

• Where Ra_L is the Rayleigh number

$$Ra_{L} = Gr_{L} \cdot \Pr = \frac{g\beta(T_{s} - T_{\infty})L_{c}^{3}}{v^{2}}\Pr \quad (11-17)$$

- The values of the constants *C* and *n* depend on the *geometry* of the surface and the *flow regime* (which depend on the Ra).
- All fluid properties are to be evaluated at the film temperature $T_f = (T_s + T_\infty)$.
- Nu relations for constant T_s are applicable for the case of constant q_s , but the plate midpoint temperature $T_{L/2}$ is used for T_s in the evaluation of the film temperature.
- Thus for uniform heat flux:

$$Nu = \frac{hL}{k} = \frac{\dot{q}_{s}L}{k\left(T_{L/2} - T_{\infty}\right)}$$
(11-27)

Empirical correlations for Nu_{avg}

TABLE 9-1

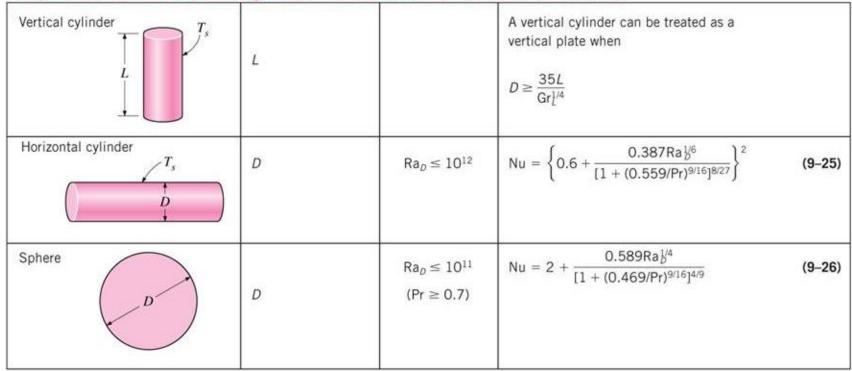
Empirical correlations for the average Nusselt number for natural convection over surfaces

Geometry	Characteristic length L_c	Range of Ra	Nu	
Vertical plate	L.	10 ⁴ -10 ⁹ 10 ²⁰ -10 ¹³ Entire range	$\begin{split} Ν = 0.59Ra_{L}^{1/4} \\ Ν = 0.1Ra_{L}^{1/3} \\ Ν = \left\{ 0.825 + \frac{0.387Ra_{L}^{1/6}}{[1 + (0.492/Pr)^{9/16}]^{8/27}} \right\}^2 \\ & \text{(complex but more accurate)} \end{split}$	(9–19) (9–20) (9–21)
Inclined plate	L		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate Replace g by $g \cos\theta$ for Ra $< 10^9$	
Horizontal plate (Surface area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface T_s	A _s /p	10 ⁴ -10 ⁷ 10 ⁷ -10 ¹¹	$Nu = 0.54 Ra_L^{1/4}$ $Nu = 0.15 Ra_L^{1/3}$	(9–22) (9–23)
(b) Lower surface of a hot plate (or upper surface of a cold plate) T_s Hot surface		105-1011	$Nu = 0.27 Ra_{L}^{1/4}$	(9–24)

Empirical correlations for Nu_{avg}

TABLE 9-1

Empirical correlations for the average Nusselt number for natural convection over surfaces



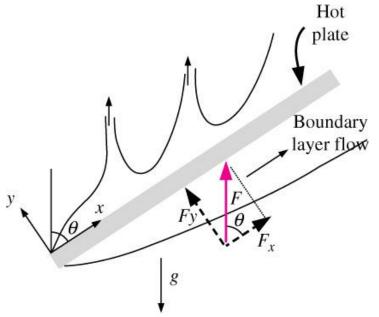


FIGURE 9–10

Natural convection flows on the upper and lower surfaces of an inclined hot plate.

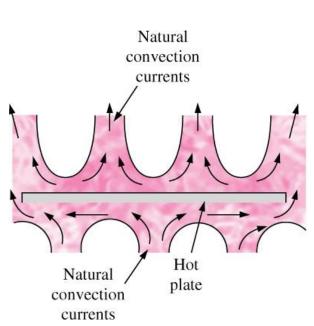


FIGURE 9–11

Natural convection flows on the upper and lower surfaces of a horizontal hot plate.

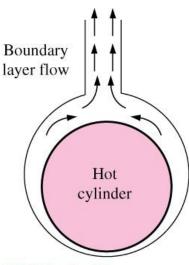


FIGURE 9–12 Natural convection flow over a horizontal hot cylinder.

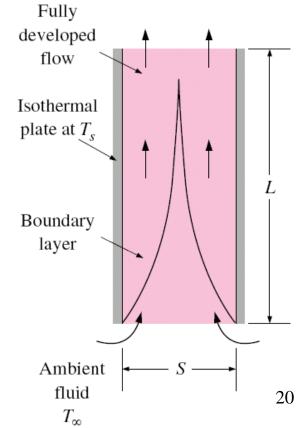
Review of Last Monday

- Driving force of natural convection?
- Volume expansion coefficient?
- Temperature and velocity profiles?
- Grashof number? Rayleigh number?
- Nusselt number relations?

9-97 A vertical cylindrical pressure vessel is 1.0 m in diameter and 3.0 m in height. Its outside average wall temperature is 60°C, while the surrounding air is at 0°C. Calculate the rate of heat loss from the vessel's cylindrical surface when there is (a) no wind and (b) a crosswind of 20 km/h.

Natural Convection from Finned Surfaces

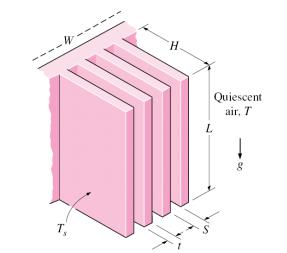
- Natural convection flow through a channel formed by two parallel plates is commonly encountered in practice.
- Long Surface
 - fully developed channel flow.
- Short surface or large spacing
 - natural convection from two independent plates in a quiescent medium.



• The recommended relation for the average Nusselt number for vertical isothermal parallel plates is

$$Nu = \frac{hS}{k} = \left[\frac{576}{\left(Ra_{s}S/L\right)^{2}} + \frac{2.873}{\left(Ra_{s}S/L\right)^{0.5}}\right]^{-0.5}$$
(11-31)

- Closely packed fins
 - greater surface area
 - smaller heat transfer coefficient.
- Widely spaced fins
 - higher heat transfer coefficient
 - smaller surface area.

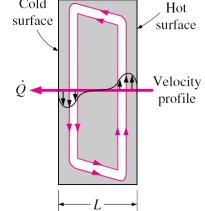


• Optimum fin spacing for a vertical heat sink

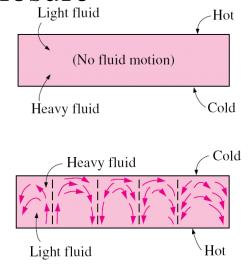
$$S_{opt} = 2.714 \left(\frac{S^3 L}{Ra_s}\right)^{0.25} = 2.714 \frac{L}{Ra_L^{0.25}}$$
(11-32) 21

Natural Convection Inside Enclosures

In a vertical enclosure, the fluid adjacent to the hotter surface rises and the fluid adjacent to the Cold surface cooler one falls, setting off a rotationary motion within the enclosure that enhances heat transfer through the enclosure.



- Heat transfer through a horizontal enclosure
 - hotter plate is at the top no convection currents (Nu=1).
 - hotter plate is at the bottom
 - Ra<1708 no convection currents (Nu=1).
 - 3x10⁵>Ra>1708 Bénard Cells.
 - Ra> $3x10^5$ turbulent flow.



22

Nusselt Number Correlations for Enclosures

• Simple power-law type relations in the form of

 $Nu = C \cdot Ra_L^n$

where *C* and *n* are constants, are sufficiently accurate, but they are usually applicable to a narrow range of Prandtl and Rayleigh numbers and aspect ratios.

- Numerous correlations are widely available for
 - horizontal rectangular enclosures,
 - inclined rectangular enclosures,
 - vertical rectangular enclosures,
 - concentric cylinders,
 - concentric spheres.

Combined Natural and Forced Convection

- Heat transfer coefficients in forced convection are typically much higher than in natural convection.
- The error involved in ignoring natural convection may be considerable at low velocities.
- Nusselt Number:
 - Forced convection (flat plate, laminar flow): $Nu_{\text{forced convection}} \propto \text{Re}^{1/2}$ - Natural convection (vertical plate, laminar flow): $Nu_{\text{natural convection}} \propto Gr^{1/4}$
- The parameter Gr/Re² represents the importance of natural convection relative to forced convection.

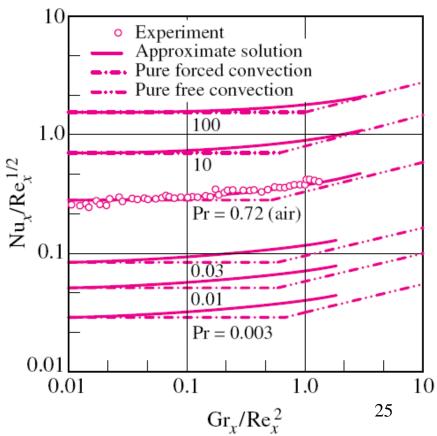
• $Gr/Re^2 < 0.1$

- natural convection is negligible.

• $Gr/Re^2 > 10$

- forced convection is negligible.

- $0.1 < Gr/Re^2 < 10$
 - forced and natural convection are not negligible.



• Natural convection may *help* or *hurt* forced convection heat transfer depending on the Cold plate relative directions Buoyant of buoyancy-induced Hot plate Buoyant flow flow Forced and the *forced* flow Buoyant flow convection motions. Forced flow

> Forced flow

Nusselt Number for Combined Natural and Forced Convection

• A review of experimental data suggests a Nusselt number correlation of the form

$$Nu_{\text{combined}} = \left(Nu_{\text{forced}}^n \pm Nu_{\text{natural}}^n\right)^{1/n}$$
 (11-66)

$$n \sim 3 - 4$$

• Nu_{forced} and Nu_{natural} are determined from the correlations for *pure forced* and *pure natural convection*, respectively.

9-79 In a production facility, thin square plates $2 \text{ m} \times 2 \text{ m}$ in size coming out of the oven at 270°C are cooled by blowing ambient air at 18°C horizontally parallel to their surfaces. Determine the air velocity above which the natural convection effects on heat transfer are less than 10 percent and thus are negligible.

